MATH2050B Mathematical Analysis I

End of term Make-up Test suggested Solution[∗]

Question 1. Let $f : \mathbb{R} \to \mathbb{R}$ and (x_n) a seq of real number s (unless explicitly otherwise), Q1 State each of the following definitions/notations.

- (a) $\lim_{n} x_n = -\infty$.
- (b) $\lim_{x \to +\infty} f(x) = \ell \in \mathbb{R}$.
- $f(c)$ $\lim_{x \to a+} f(x) = \ell \ (a, \ell \in \mathbb{R}).$
- (d) *f* is continuous at x_0 ($x_0 \in \mathbb{R}$).
- (e) f is uniformly continuous on \mathbb{R} .
- (f) $\limsup_n x_n$.

State the negation for (d) and the negation for (*e*)*.*

Solution:

- (a) For any $M \in \mathbb{R}$, there exists $N \in \mathbb{N}$ such that $x_n \leq M$ for all $n \geq N$.
- **(b)** For any $\varepsilon > 0$, there exists $M \in \mathbb{R}$ such that $|f(x) \ell| < \varepsilon$ for all $x \geq M$.
- **(c)** For any $\varepsilon > 0$, there exists $\delta > 0$ such that for any $x \in (a, a + \delta)$,

$$
|f(x) - \ell| < \varepsilon.
$$

(d) For any $\varepsilon > 0$, there exists $\delta > 0$ such that for any $x \in (x_0 - \delta, x_0 + \delta)$,

$$
|f(x) - f(x_0)| < \varepsilon.
$$

Negation: There exists an $\varepsilon_0 > 0$ such that for every $\delta > 0$ there exists $x_{\delta} \in (x_0 - \delta, x_0 + \delta)$ satisfying $|f(x_\delta) - f(x_0)| \geq \varepsilon_0$.

(e) For any $\varepsilon > 0$, there is a $\delta(\varepsilon) > 0$ such that if $x, u \in \mathbb{R}$ are any numbers satisfying $|x - u| < \infty$ $\delta(\varepsilon)$, then $|f(x) - f(u)| < \varepsilon$.

Negation: There exists an $\varepsilon_0 > 0$ such that for every $\delta > 0$ there are points x_{δ}, u_{δ} in R such that $|x_{\delta} - u_{\delta}| < \delta$ and $|f(x_{\delta}) - f(u_{\delta})| \geq \varepsilon_0$.

[∗]please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.

(f) The limit superior of (x_n) is the infimum of the set *V* of all $v \in \mathbb{R}$ which satisfies that there exists $N(v) \in \mathbb{N}$ such that $x_n \leq v$ for all $n \geq N(v)$ *.*

Question 2. State each of the following results/theorems:

- (a) The well-order properties result for $\mathbb Z$ in $\mathbb R$.
- (b) The interval charaterization theorem.
- (c) The nested interval theorem.
- (d) The Monotone Convergence Theorem for seq.
- (e) The Monotone Convergene Theorm for functions.
- (f) The max-min value theorem.
- (g) The root theorem (or the Intermediate-Value Th.)
- (h) The uniform continuity theorem.
- (i) An order-preserving result for seq.
- (j) An order-preserving result for functions.

Solution:

- **(a)** Any non-empty bounded below subset of Z has a least element.
- **(b)** If *S* is a subset of R that contains at least two points and has the property

if
$$
x, y \in S
$$
 and $x < y$, then $[x, y] \subseteq S$,

then *S* is an interval.

(c) If $I_n = [a_n, b_n]$, $n \in \mathbb{N}$, is a nested sequence of closed bounded intervals, then there exists a number $\xi \in \mathbb{R}$ such that $\xi \in I_n$ for all $n \in \mathbb{N}$.

(d) A monotone sequence of real numbers is convergent if and only if it is bounded. Further:

(i) If $X = (x_n)$ is a bounded increasing sequence, then

$$
\lim (x_n) = \sup \{x_n : n \in \mathbb{N}\}.
$$

(ii) If $Y = (y_n)$ is a bounded decreasing sequence, then

$$
\lim (y_n) = \inf \{y_n : n \in \mathbb{N}\}.
$$

- (e) Let $f: I \to \mathbb{R}$ be increasing and $(a, b) \subseteq I$. Then
- (i) $\lim_{x \to a+} f = \inf \{ f(x) : x \in I, x > a \},$

(ii) $\lim_{x \to b^-} f = \sup\{f(x) : x \in I, x < b\}.$

The corresponding result for decreasing functions also holds.

(f) Let $I := [a, b]$ be a closed bounded interval and let $f : I \to \mathbb{R}$ be continuous on *I*. Then *f* has an absolute maximum and an absolute minimum on *I*.

(g) Let $I = [a, b]$ and let $f : I \to \mathbb{R}$ be continuous on I. If $f(a) < 0 < f(b)$, or if $f(a) > 0 > f(b)$, then there exists a number $c \in (a, b)$ such that $f(c) = 0$.

(h) Let *I* be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on *I*. Then *f* is uniformly continuous on *I*.

(i) Let (x_n) be a convergent sequence in R. If $a \le x_n \le b$ for all $n \in \mathbb{N}$, then $a \le \lim_{n \to \infty} x_n \le b$. Also, if $\alpha < \lim_{n} y_n < \beta$ then there exists $N \in \mathbb{N}$ such that $\alpha < y_n < \beta$ for all $n \geq N$.

(j) Let $A \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$, and let $c \in \mathbb{R}$ be a cluster point of *A*. If

$$
a \le f(x) \le b
$$
 for all $x \in A, x \ne c$,

and if $\lim_{x \to c} f(x)$ exists, then $a \leq \lim_{x \to c} f(x) \leq b$.

Question 3. State and prove the Bolzano-Weierstrass Th. Yon may make use any results in *Q*2. In particular you may wish to apply (b) and the bisection technique (Hint: any seq (x_n) in $[a, b] = I ∪ J \Rightarrow$ either *I* or *J* contains x_n for infinitely many *n*). If yon make use of (e) then you must attach a proof of the existence for a monotone subsequence.

Solution:

Bolzano-Weierstrass Theorem: A bounded sequence of real numbers has a convergent subsequence.

First Proof. Since the set of values $\{x_n : n \in \mathbb{N}\}\$ is bounded, this set is contained in an interval $I_1 := [a, b]$ *.* We take $n_1 := 1$ *.*

We now bisect I_1 into two equal subintervals I'_1 and I''_1 , and divide the set of indices $\{n \in \mathbb{N} :$ $n > 1$ into two parts:

$$
A_1 := \{ n \in \mathbb{N} : n > n_1, x_n \in I'_1 \}, \quad B_1 = \{ n \in \mathbb{N} : n > n_1, x_n \in I''_1 \}.
$$

If A_1 is infinite, we take $I_2 := I'_1$ and let n_2 be the smallest natural number in A_1 . If A_1 is a finite set, then B_1 must be infinite, and we take $I_2 := I''_1$ and let n_2 be the smallest natural number in B_1 .

We now bisect I_2 into two equal subintervals I'_2 and I''_2 , and divide the set $\{n \in \mathbb{N} : n > n_2\}$ into two parts:

$$
A_2 = \{ n \in \mathbb{N} : n > n_2, x_n \in I_2' \}, \quad B_2 := \{ n \in \mathbb{N} : n > n_2, x_n \in I_2'' \}.
$$

If A_2 is infinite, we take $I_3 := I'_2$ and let n_3 be the smallest natural number in A_2 . If A_2 is a finite set, then B_2 must be infinite, and we take $I_3 := I''_2$ and let n_3 be the smallest natural number in B_2 .

We continue in this way to obtain a sequence of nested intervals $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_k \supseteq \cdots$ and a subsequence (x_{n_k}) of X such that $x_{n_k} \in I_k$ for $k \in \mathbb{N}$. Since the length of I_k is equal to $(b-a)/2^{k-1}$, it follows from Nested Intervals Theorem that there is a (unique) common point $\xi \in I_k$ for all $k \in \mathbb{N}$. Moreover, since x_{n_k} and ξ both belong to I_k , we have

$$
|x_{n_k} - \xi| \le (b - a)/2^{k-1}
$$

whence it follows that the subsequence (x_{n_k}) of *X* converges to ξ .

Second Proof. Firstly, we show that any bounded sequence (x_n) has a subsequence that is monotone. We will call x_m a peak if $n \geq m \Rightarrow x_n \leq x_m$ (i.e, if no term to the right of x_m is greater than x_m).

Case 1: *X* has infinitely many peaks. Order the peaks by increasing subscripts. Then

$$
x_{m_1} \geq x_{m_2} \geq \cdots \geq x_{m_k} \geq \cdots,
$$

so ${x_{m_k}}$ is a decreasing subsequence.

Case 2: *X* has finitely many (maybe 0) peaks. Let $x_{m_1}, x_{m_2}, \ldots, x_{m_r}$ denote these peaks. Let $s_1 = m_r + 1$ (the first index past the last peak) or $s_1 = 1$ if there are no peaks. Since x_{s_1} is not a peak, there exists $s_2 > s_1$ such that $x_{s_1} < x_{s_2}$. Since x_{s_2} is not a peak, there exists $s_3 > s_2$ such that $x_{s_2} < x_{s_3}$. Continuing, we get an increasing subsequence.

It follows that if $X = (x_n)$ is a bounded sequence, then it has a subsequence X' that is monotone. Since this subsequence is also bounded, it follows from the Monotone Convergence that the subsequence is convergent.

Question 4. Suppose $1 < r < \liminf_{n} x_n^{1/n} \in \mathbb{R}$, where $n \in \mathbb{N}$. Show that $\exists N \in \mathbb{N}$ s.t.

$$
r < x_n^{1/n} \quad \forall n \ge N,
$$

and that $\sum_{n=1}^{\infty}$ $\sum_{n=1}$ $x_n = +\infty$.

Solution: Let $a = \liminf_{n} x_n^{1/n}$ and $\varepsilon = \frac{a-r}{2}$. It follows from the definition of Limit Inferior that there exists $N \in \mathbb{N}$ such that

$$
a - \varepsilon < x_n^{1/n}, \quad \forall n \ge N.
$$

This implies that $x_n^{1/n} > r$, due to the fact that $a - \frac{a-r}{2} > r$. It also yields that $x_n > r^n$ for all $n \geqslant N$.

Notice that the geometric series $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{n} r^n = \infty$ is divergent, since $r > 1$. By Comparison Test, we obtain ^P*[∞]* $\sum_{n=1}$ $x_n = \infty$.

Question 5. In $\varepsilon - \delta$ (or $\varepsilon - N$) terminology show that

(a) If $\lim_{n} x_n = x \in \mathbb{R}$ and $\lim_{n} y_n = y$ then

$$
\lim_n x_n y_n = xy.
$$

(b) $\lim_{x \to 2} \frac{x^2 + 8}{x^2 - 1} = 4.$ (c) Let $f, g, F, G : (0, +\infty) \to \mathbb{R}$ be such that

$$
\lim_{x \to \infty} F(x) = L_1, \quad \lim_{x \to \infty} G(x) = L_2 \quad (L_1, L_2 \in \mathbb{R} \setminus \{0\})
$$

 $\lim_{x \to \infty} f(x) = +\infty = \lim_{x \to \infty} g(x), \quad \lim_{x \to \infty} (f(x)/x) = \ell_1, \quad \lim_{x \to \infty} (g(x)/x) = \ell_2 \quad (\ell_1, \ell_2 \in \mathbb{R} \setminus \{0\}).$

Then

$$
\lim_{x \to \infty} (F(x)/G(x)) = \frac{L_1}{L_2}, \quad \text{and} \quad \lim_{x \to \infty} (f(x)/g(x)) = \frac{\ell_1}{\ell_2}.
$$

Solution:

(a) Since $\lim_{n} y_n = y$, there exists $N_0 \in \mathbb{N}$ such that for any $n \ge N_0$, we have $|y_n - y| < 1$. It directly follows that $|y_n| < |y| + 1$ for any $n \geq N_0$.

Fix $\varepsilon > 0$. Take $\varepsilon' > 0$ such that $\varepsilon' = \min\{\frac{\varepsilon}{(|x|+|y|+2)}, 1\}$. Since $\lim_n x_n = x$, there exists $N_1(\varepsilon) \in \mathbb{N}$ such that for any $n \geq N_1(\varepsilon)$, we have $|x_n - x| < \varepsilon'$. Similarly, since $\lim_n y_n = y$, there exists $N_2(\varepsilon) \in \mathbb{N}$ such that for any $n \geq N_2(\varepsilon)$, we obtain $|y_n - y| < \varepsilon'$.

Hence, the triangle inequality implies that

$$
|x_n y_n - xy| \le |x_n y_n - xy_n|
$$

\n
$$
\le |x_n - x| |y_n| + |x| |y_n - y|
$$

\n
$$
< \varepsilon' \cdot (|y| + 1) + (|x| + 1)\varepsilon'
$$

\n
$$
= (|x| + |y| + 2)\varepsilon'
$$

\n
$$
\le \varepsilon,
$$

for all $n \ge \max\{N_0, N_1(\varepsilon), N_2(\varepsilon)\}\$. This implies that $(x_n y_n)$ is convergent and $\lim x_n y_n = xy$.

(b) Let $\varepsilon > 0$, take $\delta(\varepsilon) = \min\{\frac{1}{2}, \frac{\varepsilon}{16}\}.$

Suppose $|x-2| < \delta(\varepsilon)$, then

$$
-\frac{1}{2} < x - 2 < \frac{1}{2} \quad \text{i.e.} \quad \frac{3}{2} < x < \frac{5}{2},
$$

which implies that $x^2 - 1 > 1$ and $|x + 2| < 5$.

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

It follows that

$$
\frac{x^2 + 8}{x^2 - 1} - 4 = \left| \frac{x^2 + 8 - 4(x^2 - 1)}{x^2 - 1} \right|
$$

$$
= \left| \frac{3(x^2 - 4)}{x^2 - 1} \right|
$$

$$
= 3 \frac{|(x + 2)(x - 2)|}{|x^2 - 1|}
$$

$$
< 3\frac{5}{1} \cdot |(x - 2)|
$$

$$
< 15 \cdot \delta(\varepsilon)
$$

$$
< \varepsilon.
$$

Therefore $\lim_{x \to 2} \frac{x^2 + 8}{x^2 - 1} = 4.$

(c) Fix $\varepsilon > 0$, and let $\epsilon' = \left\{ \frac{|L_2|^2}{2(|L_1|+1)} \right\}$ $\frac{|L_2|}{2(|L_1|+|L_2|)}\epsilon, 1$. Since $\lim_{x\to\infty} F(x) = L_1$, there exists $M_1 \in \mathbb{R}$ such that $|F(x) - L_1| < \epsilon'$ for all $x \ge M_1$. Similarly, since $\lim_{x \to \infty} G(x) = L_2$, there exists $M_2 \in \mathbb{R}$ such that $|F(x) - L_2| < \epsilon'$ for all $x \geq M_2$.

Let $M(\varepsilon) = \max\{M_1, M_2\}$. Then for any $x \ge M(\varepsilon)$,

 $\begin{array}{|c|c|} \hline \multicolumn{1}{|c|}{3} & \multicolumn{1}{|c|}{4} \multicolumn{1}{|c|}{5} \multicolumn{1}{|c|}{6} \multicolumn{1}{|c|$

$$
\frac{F(x)}{G(x)} - \frac{L_1}{L_2}\Big| = \left|\frac{L_2F(x) - L_1G(x)}{L_2G(x)}\right|
$$

\n
$$
= \left|\frac{L_2F(x) - L_2L_1 + L_2L_1 - L_1G(x)}{L_2G(x)}\right|
$$

\n
$$
\leq \frac{|L_2||F(x) - L_1| + |L_1| \cdot |G(x) - L_2|}{|L_2G(x)|}
$$

\n
$$
\leq \frac{|L_2|\epsilon'}{|L_2| \cdot (|L_2|/2)} + \frac{|L_1|\epsilon'}{|L_2| \cdot (|L_2|/2)}
$$

\n
$$
= \frac{2(|L_1| + |L_2|)}{|L_2|^2} \epsilon'
$$

\n
$$
\leq \epsilon,
$$

that is, $\lim_{x \to \infty} \frac{F(x)}{G(x)}$ $\frac{F(x)}{G(x)} = \frac{L_1}{L_2}$ $\frac{L_1}{L_2}$.

Next we show that $\lim_{x\to\infty}(f(x)/g(x))=\frac{\ell_1}{\ell_2}$. For $x>0$, we define $\widetilde{F}(x):=\frac{f(x)}{x}$ and $\widetilde{G}(x):=\frac{g(x)}{x}$. By above assumption we have $\lim_{x \to \infty} F(x) = \ell_1$ and $\lim_{x \to \infty} G(x) = \ell_2$.

Notice that

$$
\frac{f(x)}{g(x)} = \frac{f(x)}{x} \cdot \frac{x}{g(x)} = \frac{\widetilde{F}(x)}{\widetilde{G}(x)}, \quad \text{ for all } x > 0.
$$

Since $\lim_{x\to\infty} F(x) = \ell_1$ and $\lim_{x\to\infty} G(x) = \ell_2$ with $\ell_1, \ell_2 \neq 0$, it follows by above result that

$$
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{F(x)}{\widetilde{G}(x)} = \frac{\ell_1}{\ell_2}.
$$

Remark: The method to prove $\lim_{x\to\infty} \frac{F(x)}{\widetilde{C}(x)}$ $G(x)$ $=\frac{\ell_1}{\ell_2}$ $\frac{\partial I}{\partial z}$ is similar to that used in our previous argument.