
MATH2050B Mathematical Analysis I

End of term Make-up Test suggested Solution∗

Question 1. Let f : R → R and (xn) a seq of real number s ( unless explicitly otherwise), Q1
State each of the following definitions/notations.

(a) lim
n

xn = −∞.

(b) lim
x→+∞

f(x) = ℓ (∈ R).

(c) lim
x→a+

f(x) = ℓ (a, ℓ ∈ R).

(d) f is continuous at x0 (x0 ∈ R).

(e) f is uniformly continuous on R.

(f) limsupn xn.

State the negation for (d) and the negation for (e).

Solution:

(a) For any M ∈ R, there exists N ∈ N such that xn < M for all n ≥ N.

(b) For any ε > 0, there exists M ∈ R such that |f(x)− ℓ| < ε for all x ≥ M.

(c) For any ε > 0, there exists δ > 0 such that for any x ∈ (a, a+ δ),

|f(x)− ℓ| < ε.

(d) For any ε > 0, there exists δ > 0 such that for any x ∈ (x0 − δ, x0 + δ),

|f(x)− f(x0)| < ε.

Negation: There exists an ε0 > 0 such that for every δ > 0 there exists xδ ∈ (x0 − δ, x0 + δ)

satisfying |f(xδ)− f(x0)| ≥ ε0.

(e) For any ε > 0, there is a δ(ε) > 0 such that if x, u ∈ R are any numbers satisfying |x− u| <
δ(ε), then |f(x)− f(u)| < ε.

Negation: There exists an ε0 > 0 such that for every δ > 0 there are points xδ, uδ in R such that
|xδ − uδ| < δ and |f (xδ)− f (uδ)| ≥ ε0.

∗please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.
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(f) The limit superior of (xn) is the infimum of the set V of all v ∈ R which satisfies that there
exists N(v) ∈ N such that xn ≤ v for all n ≥ N(v).

Question 2. State each of the following results/theorems:

(a) The well-order properties result for Z in R.

(b) The interval charaterization theorem.

(c) The nested interval theorem.

(d) The Monotone Convergence Theorem for seq.

(e) The Monotone Convergene Theorm for functions.

(f) The max-min value theorem.

(g) The root theorem (or the Intermediate-Value Th.)

(h) The uniform continuity theorem.

(i) An order-preserving result for seq.

(j) An order-preserving result for functions.

Solution:

(a) Any non-empty bounded below subset of Z has a least element.

(b) If S is a subset of R that contains at least two points and has the property

if x, y ∈ S and x < y, then [x, y] ⊆ S,

then S is an interval.

(c) If In = [an, bn] , n ∈ N, is a nested sequence of closed bounded intervals, then there exists a
number ξ ∈ R such that ξ ∈ In for all n ∈ N.

(d) A monotone sequence of real numbers is convergent if and only if it is bounded. Further:

(i) If X = (xn) is a bounded increasing sequence, then

lim (xn) = sup {xn : n ∈ N} .

(ii) If Y = (yn) is a bounded decreasing sequence, then

lim (yn) = inf {yn : n ∈ N} .

(e) Let f : I → R be increasing and (a, b) ⊆ I. Then

(i) limx→a+ f = inf{f(x) : x ∈ I, x > a},

2



(ii) limx→b− f = sup{f(x) : x ∈ I, x < b}.

The corresponding result for decreasing functions also holds.

(f) Let I := [a, b] be a closed bounded interval and let f : I → R be continuous on I. Then f

has an absolute maximum and an absolute minimum on I.

(g) Let I = [a, b] and let f : I → R be continuous on I. If f(a) < 0 < f(b), or if f(a) > 0 > f(b),
then there exists a number c ∈ (a, b) such that f(c) = 0.

(h) Let I be a closed bounded interval and let f : I → R be continuous on I. Then f is uniformly
continuous on I.

(i) Let (xn) be a convergent sequence in R. If a ≤ xn ≤ b for all n ∈ N, then a ≤ lim
n→∞

xn ≤ b.

Also, if α < lim
n

yn < β then there exists N ∈ N such that α < yn < β for all n ≥ N.

(j) Let A ⊆ R, let f : A → R, and let c ∈ R be a cluster point of A. If

a ≤ f(x) ≤ b for all x ∈ A, x ̸= c,

and if lim
x→c

f(x) exists, then a ≤ lim
x→c

f(x) ≤ b.

Question 3. State and prove the Bolzano-Weierstrass Th. Yon may make use any results in
Q2. In particular you may wish to apply (b) and the bisection technique (Hint: any seq (xn) in
[a, b] = I ∪ J ⇒ either I or J contains xn for infinitely many n). If yon make use of (e) then you
must attach a proof of the existence for a monotone subsequence.

Solution:

Bolzano-Weierstrass Theorem: A bounded sequence of real numbers has a convergent sub-
sequence.

First Proof. Since the set of values {xn : n ∈ N} is bounded, this set is contained in an interval
I1 := [a, b]. We take n1 := 1.

We now bisect I1 into two equal subintervals I ′1 and I ′′1 , and divide the set of indices {n ∈ N :

n > 1} into two parts:

A1 := {n ∈ N : n > n1, xn ∈ I ′1} , B1 = {n ∈ N : n > n1, xn ∈ I ′′1 } .

If A1 is infinite, we take I2 := I ′1 and let n2 be the smallest natural number in A1. If A1 is a finite
set, then B1 must be infinite, and we take I2 := I ′′1 and let n2 be the smallest natural number in B1.

We now bisect I2 into two equal subintervals I ′2 and I ′′2 , and divide the set {n ∈ N : n > n2} into
two parts:

A2 = {n ∈ N : n > n2, xn ∈ I ′2} , B2 := {n ∈ N : n > n2, xn ∈ I ′′2 } .
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If A2 is infinite, we take I3 := I ′2 and let n3 be the smallest natural number in A2. If A2 is a finite
set, then B2 must be infinite, and we take I3 := I ′′2 and let n3 be the smallest natural number in B2.

We continue in this way to obtain a sequence of nested intervals I1 ⊇ I2 ⊇ · · · ⊇ Ik ⊇ · · · and a
subsequence (xnk

) of X such that xnk
∈ Ik for k ∈ N. Since the length of Ik is equal to (b−a)/2k−1,

it follows from Nested Intervals Theorem that there is a (unique) common point ξ ∈ Ik for all k ∈ N.
Moreover, since xnk

and ξ both belong to Ik, we have

|xnk
− ξ| ≤ (b− a)/2k−1

whence it follows that the subsequence (xnk
) of X converges to ξ.

Second Proof. Firstly, we show that any bounded sequence (xn) has a subsequence that is
monotone. We will call xm a peak if n ≥ m ⇒ xn ≤ xm (i.e, if no term to the right of xm is greater
than xm ).

Case 1: X has infinitely many peaks. Order the peaks by increasing subscripts. Then

xm1
≥ xm2

≥ · · · ≥ xmk
≥ · · · ,

so {xmk
} is a decreasing subsequence.

Case 2: X has finitely many (maybe 0) peaks. Let xm1
, xm2

, . . . , xmr
denote these peaks. Let

s1 = mr + 1 (the first index past the last peak) or s1 = 1 if there are no peaks. Since xs1 is not a
peak, there exists s2 > s1 such that xs1 < xs2 . Since xs2 is not a peak, there exists s3 > s2 such
that xs2 < xs3 . Continuing, we get an increasing subsequence.

It follows that if X = (xn) is a bounded sequence, then it has a subsequence X ′ that is mono-
tone. Since this subsequence is also bounded, it follows from the Monotone Convergence that the
subsequence is convergent.

Question 4. Suppose 1 < r < lim inf
n

x
1/n
n ∈ R, where n ∈ N. Show that ∃N ∈ N s.t.

r < x1/n
n ∀n ⩾ N,

and that
∞∑

n=1
xn = +∞.

Solution: Let a = lim inf
n

x
1/n
n and ε = a−r

2 . It follows from the definition of Limit Inferior that
there exists N ∈ N such that

a− ε < x1/n
n , ∀n ⩾ N.

This implies that x
1/n
n > r, due to the fact that a − a−r

2 > r. It also yields that xn > rn for all
n ⩾ N.
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Notice that the geometric series
∞∑

n=1
rn = ∞ is divergent, since r > 1. By Comparison Test, we

obtain
∞∑

n=1
xn = ∞.

Question 5. In ε− δ (or ε−N) terminology show that

(a) If lim
n

xn = x ∈ R and lim
n

yn = y then

lim
n

xnyn = xy.

(b) lim
x→2

x2+8
x2−1 = 4.

(c) Let f, g, F,G : (0,+∞) → R be such that

lim
x→∞

F (x) = L1, lim
x→∞

G(x) = L2 (L1, L2 ∈ R \ {0})

lim
x→∞

f(x) = +∞ = lim
x→∞

g(x), lim
x→∞

(f(x)/x) = ℓ1, lim
x→∞

(g(x)/x) = ℓ2 (ℓ1, ℓ2 ∈ R \ {0}) .

Then
lim
x→∞

(F (x)/G(x)) =
L1

L2
, and lim

x→∞
(f(x)/g(x)) =

ℓ1
ℓ2
.

Solution:

(a) Since limn yn = y, there exists N0 ∈ N such that for any n ≥ N0, we have |yn − y| < 1. It
directly follows that |yn| < |y|+ 1 for any n ≥ N0.

Fix ε > 0. Take ε′ > 0 such that ε′ = min{ ε
(|x|+|y|+2) , 1}. Since limn xn = x, there exists

N1(ε) ∈ N such that for any n ≥ N1(ε), we have |xn − x| < ε′. Similarly, since limn yn = y, there
exists N2(ε) ∈ N such that for any n ≥ N2(ε), we obtain |yn − y| < ε′.

Hence, the triangle inequality implies that

|xnyn − xy| ≤ |xnyn − xyn|

≤ |xn − x| |yn|+ |x| |yn − y|

<ε′ · (|y|+ 1) + (|x|+ 1)ε′

=(|x|+ |y|+ 2)ε′

≤ε,

for all n ≥ max{N0, N1(ε), N2(ε)}. This implies that (xnyn) is convergent and limxnyn = xy.

(b) Let ε > 0, take δ(ε) = min{ 1
2 ,

ε
16}.

Suppose |x− 2| < δ(ε), then

−1

2
< x− 2 <

1

2
i.e. 3

2
< x <

5

2
,
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which implies that x2 − 1 > 1 and |x+ 2| < 5.

It follows that ∣∣∣∣x2 + 8

x2 − 1
− 4

∣∣∣∣ = ∣∣∣∣x2 + 8− 4(x2 − 1)

x2 − 1

∣∣∣∣
=

∣∣∣∣3(x2 − 4)

x2 − 1

∣∣∣∣
= 3

|(x+ 2)(x− 2)|
|x2 − 1|

< 3
5

1
· |(x− 2)|

< 15 · δ(ε)

< ε.

Therefore lim
x→2

x2+8
x2−1 = 4.

(c) Fix ε > 0, and let ϵ′ = { |L2|2
2(|L1|+|L2|)ε, 1}. Since lim

x→∞
F (x) = L1, there exists M1 ∈ R such

that |F (x)−L1| < ϵ′ for all x ≥ M1. Similarly, since lim
x→∞

G(x) = L2, there exists M2 ∈ R such that
|F (x)− L2| < ϵ′ for all x ≥ M2.

Let M(ε) = max{M1,M2}. Then for any x ≥ M(ε),∣∣∣∣F (x)

G(x)
− L1

L2

∣∣∣∣ = ∣∣∣∣L2F (x)− L1G(x)

L2G(x)

∣∣∣∣
=

∣∣∣∣L2F (x)− L2L1 + L2L1 − L1G(x)

L2G(x)

∣∣∣∣
≤ |L2||F (x)− L1|+ |L1| · |G(x)− L2|

|L2G(x)|

≤ |L2|ϵ′

|L2| · (|L2|/2)
+

|L1|ϵ′

|L2| · (|L2|/2)

=
2 (|L1|+ |L2|)

|L2|2
ϵ′

≤ ε,

that is, lim
x→∞

F (x)

G(x)
=

L1

L2
.

Next we show that limx→∞(f(x)/g(x)) =
ℓ1
ℓ2
. For x > 0, we define F̃ (x) := f(x)

x and G̃(x) := g(x)
x .

By above assumption we have lim
x→∞

F̃ (x) = ℓ1 and lim
x→∞

G̃(x) = ℓ2.

Notice that
f(x)

g(x)
=

f(x)

x
· x

g(x)
=

F̃ (x)

G̃(x)
, for all x > 0.
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Since limx→∞ F̃ (x) = ℓ1 and limx→∞ G̃(x) = ℓ2 with ℓ1, ℓ2 ̸= 0 , it follows by above result that

lim
x→∞

f(x)

g(x)
= lim

x→∞

F̃ (x)

G̃(x)
=

ℓ1
ℓ2
.

Remark: The method to prove limx→∞
F̃ (x)

G̃(x)
=

ℓ1
ℓ2

is similar to that used in our previous

argument.
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